Deeply Virtual Compton Scattering at Jlab: The 12GeV era

Hall A Running 2014/15

Mongi Dlamini

HUGS 2015

Talk outline:

 Generalized Parton Distributions and Deeply Virtual Compton Scattering

DVCS at JLab 12GeV in Hall A: Experiment E12-04-144

★Goals and kinematics

*Instrumentation

*Hall A's High Resolution Spectrometer(HRS)

Dedicated DVCS Calorimeter

Preliminary studies

Nucleon Structure: a unified view

Generalized Parton Distributions(GPDs)

- Amplitude of removing a parton at an earlier time and putting it back later, with a final momentum fraction
- GPDs encode both position and momentum information of partons (quarks and gluons)
- Four quark or gluon GPDs parametrize nucleon structure at leading order and twist:

H,E, (unpolarized)

- \tilde{H} , $\tilde{E}(polarized)$
- Connect to FFs and PDFs:

$$\int_{-1}^{+1} dx H^q(x,\xi,t) = F_1^q(t) , \quad \int_{-1}^{+1} dx E^q(x,\xi,t) = F_2^q(t) ,$$
$$\int_{-1}^{+1} dx \tilde{H}^q(x,\xi,t) = G_A^q(t) , \quad \int_{-1}^{+1} dx \tilde{E}^q(x,\xi,t) = G_P^q(t) .$$

DVCS is the cleanest way to measure GPDs. DVMP has strongly interacting final meson which makes Factorization complex.

Deeply Virtual Compton Scattering

- **x** : average longitudinal momentum fraction of the struck quark
- ξ : longitudinal momentum transfer
 t << Q^{'2} : momentum transfer
 Q^{'2} >> 1 GeV² : hard scale

GPDs: What can we learn from them?

- 1. Quark (Orbital) Angular Momentum of Nucleons and the spin puzzle
 - \rightarrow Considering Ji's decomposition of nucleon spin (Ji's Sum Rule):

HUGS 2015

HUGS 2015

Results of DVCS at 6GeV, Hall A

[C. Munoz Camacho et al.,2005]

Helicity-dependent $(d^4\Sigma)$ and helicity-independent $(d^4\sigma)$ cross sections measured in E00-110 for $Q^2 = 2.3 \text{ GeV}^2$ and t = -0.28 GeV².

Fourier coefficients extracted from the E00-110 data

Experiment E12-04-144

DVCS in Hall A of Jlab: 2014/15

→ Scaling test of DVCS cross-sections to 5% precision over large arm in Q^2

 \rightarrow Separation of *Re* and *Im* part of DVCS amplitude (polarized and total cross section)

Proposed scans in Q² and x_{Bj}

Previous experiments give hint of leading order domination. The present experiment aims to test this domination over an expanded arm in Q^2 and x_{Bj} scan.

Instrumentation:

High Resolution Spectrometer

We use the Left HRS to detect the scattered electron

s2m and s0: scintillators for triggering

PID: Gas Cherenkov, Pion Rejector calorimeter

Instrumentation:

Dedicated DVCS Calorimeter

DVCS coincidence trigger module: (NEW FOR 2014-2015)

- → Is a second level trigger module
 - ~800 ns decision time
- → HRS triggering in DVCS trigger module.
- → Selects a 2x2 block cluster above a

programmable

- calorimeter energy threshold.
- → Can bypass cluster
- finding(autoval.), to take DIS
- → Simultaneous multiple

triggers

Preliminary Studies

HUGS 2015

208

9.254

0.935

36.61/28

 25.99 ± 2.67

 9.117 ± 0.031

0.1277

Energy resolution per block

Preliminary Studies:

Energy Resolution from elastic (GeV) at 5GeV

Energy Resolution from elastic (GeV) at 7GeV

Preliminary Studies:

Coincidence time optimization

 \rightarrow To improve calo energy resolution

close out accidentals and lower photon energy threshold

 $\rightarrow\,$ align all block times at zero to get a global Time window

 \rightarrow consider calo time correlations with HRS Variables such as electron momentum, Scintillator timing, electron signal size, etc.

- → apply corrections
- \rightarrow target was a sigma of at-most 1ns

Status and conclusions

Running to continue ...

> 100+ days approved

Run time already scheduled/planned for 2016

Scaling test of DVCS cross section for leading order factorization confirmation

Preliminary analysis of data continues: waveform analysis of calorimeter data

Acknowledgements: DVCS Collaboration Hall A Collaboration

Thank you

Deeply virtual meson production (DVMP)

- Mesons select definite charge, spin, flavor component of GPD
- Quantum numbers in DVMP probe individual GPD components selectively
- Need good understanding of reaction mechanism
 - QCD factorization for mesons is complex (additional interaction of the produced meson)

MarcoCarmignotto_GHP2 015_v06